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This paper presents a statistical method for filtering out or moderating the influence of meteorological fluctuations on ozone 
concentrations. Use of this technique in examining trends in ambient ozone air quality is demonstrated with ozone data from a 
monitoring location in New Jersey. The results indicate that this method can detect changes in ozone air quality due to changes in 
emissions in the presence of meteorological fluctuations. This method can be useful in examining the effectiveness of regulatory 
initiatives in improving ozone air quality. 

Introduction 
It is well known that meteorology plays a significant role in 

establishing conditions conducive to the formation and buildup of 
high ozone concentrations.t-3 Analysis of ozone air quality trends 
in the northeastern United States is hampered by the lack of a long­
term quality-assured database, as well as by the variability in 
meteorology. Also, it is difficult to detect the change in ozone air 
quality due to the change in emissions in the presence of meteo­
rological fluctuations.4 Furthermore, unless the change in emis­
sions is substantial, any improvement in ozone air quality achieved 
from modest emissions reductions can be easily masked by the 
variability in meteorology.s 

Since ambient ozone concentrations are strongly influenced by 
meteorological fluctuations, statistically robust methods are needed 
to track the effectiveness of regulatory initiatives in improving 
ambient ozone air quality. We must separate different phenomena 
present in the time series of both meteorological and ozone data 
which have different characteristics such as long- and short-term 
variations. A precise examination of either meteorological or 
ozone data becomes extremely complex because both strongly 
affect each other and produce false effects for each side. Statisti­
cal methods currently being used6-3 to detect ozone trends are not 
powerful enough to clearly separate random variations and meteo­
rological effects from long-term trends. 

In this paper, we present a method to filter out or moderate the 
influence of meteorology on ambient ozone levels, using surface 
temperature as a surrogate for all meteorological conditions that 
affect ozone. The results from the application of this method to 
ozone data from Cliffside Park, New Jersey, reveal a marked 

Implications 
Because the influence of stochastic and seasonal variations in meteoro­

logical conditions on ambient ozone concentrations is much greater than 
!flat of long-term changes in emissions of ozone precursors, it is difficult to 
assess the effectiveness of regulatory Initiatives in Improving ozone air 
quality. Although a meteorologically weighted measure of ozone may 
alleviate some otthe difffculties associated with the analysis of ozone trends, 
a statistically robust method Is necessary to detect changes in ozone air 
quality in the presence of meteorological fluctuations. This paper presents 
a technique for filtering out or moderating the influence of meteorology on 
ozone concentrations so that the Impact of regulatory programs on ambient 
ozone air quality can be assessed. 

change in ambient ozone concentrations during the post-1988 
period. This change in ozone concentrations in 1989 may be a 
result of controls on the volatility of fuel used in the Northeast 

Data and Analysis Procedures 

Data 
Hourly concentrations of ozone measured at the Cliffside Park 

monitor in northern New Jersey from 1983 through 1991 were 
obtained from the U.S. EPA's Aerometric Information Retrieval 
System (AIRS) database. Also, hourly values of surface tempera­
ture measured at LaGuardia Airport in New York City, which is 
the weather station nearest to the location of the ozone monitor, 
were asse1nbled for the above time period. A subset of data 
consisting of daily maxima of temperature and ozone was derived 
from the hourly time series in the following analysis. 

Method of Analysis 
We assume that a time series of temperature or ozone may be 

represented as 
X(t) = e(t) + S(t) + W(t) (I) 

where X(t) is the original time series, e(t) is a trend component, 
S (t) is seasonal variation, and W(t) is white noise. In our analysis, 
we will separate the deterministic portions (e and S) from the 
short-term variations (white noise) in the data using the 
Kolmogorov-Zurbenko CKZm.p) filter.9 The KZ,.p filter is a low­
pass filter produced by repeated iterations of a simple moving 
average. The moving average (each iteration) is defined by 

1 t 

Y;= m 2: X;.i 
j • -K 

(2) 

where m = 2k + l. The Y1 become the input for the second pass, 
and so on. Determination of the final low-pass filter (specifying 
"m" and the number of passes "p") is an iterative process in which 
the data user determines that the white noise has been removed. 

The output time series, Y,, is the low-frequency part of X,, 

Y, = KZ,_p (X,). (3) 

Copyright 1994- Air & Waste Management Association 
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The Y, contain both long-term trend and seasonal effects. The 

KZ filter and its statistical characteristics have been carefully 

studied by Zurbenko.JO 
When the ~.J [29--day length (m) with three iterations (p)] 

ftlter is applied to the daily maximum temperature and the log of 

daily maximum ozone concentration data, one obtains time series 

that exhibit no white noise (Figure 1). The filtered temperature 

and the log of ozone time series are denoted hereafter as T ~a(t) and 

O~a(t), respectively. 
Quantile-quantile (QQ) plots of the residual of the filtered 

temperature [T(t) - T ~a(t) J and the log of ozone [ {O(t)- O~a(t)} = 

W(t)] are presented in Figures 2(a) and 2(b), respectively, to 

illustrate that they are indeed white noise; a QQ plot of 3,000 

normal random numbers is shown in Figure 2(c) for comparison. 

Periodograms (not shown here) of the residuals also confirm that 

they are almost white noise. In addition, a scatter plot of ozone 

residuals and temperature residuals indicates no relationship 

between them (Figure 3). Therefore, we proceed with our analysis 

of noise-free (fi ltered) temperature and ozone data. 

A linear regression of the filtered log of ozone concentrations 

[O~a(t)] on flltered temperature [T~a(t)] data was performed: 

O~a(t) = aT~a(t) + b + E(t) 

R2 = 0.83 
(4) 

where a and b are fitted parameters, E(t) are the residuals of the 

relationship, and R2 is the square of the correlation coefficient. 

The averaged annual profiles of temperature and ozone, pre­

sented in Figure 4, indicate a phase lag between temperature and 

ozone. Ozone concentrations are influenced by both emissions 

and meteorological variables, whereas temperature is dictated 

primarily by the prevailing meteorological conditions. The linear 

relationship between O~a(t) and T ~a(t) becomes stronger when the 

temperature data are lagged by 19 days (Figure 5). 

O~a(t) = aT~a(t+l9) + b + E(t) 

R2 = 0.93 
(5) 

The E(t) reveal changes in ozone attributable to changes in 

emissions. Moreover, the relationship is devoid of the white noise 

that would characterize a regression approach using the raw data. 

A KZ1 yur.J filter was applied to E(t), 

I 
1 
j : 
j 

-
Agure 1. Seasonal variation in the dally maxima of temperature and Jog of 

ozone derived from the application of KZ29•3 to the original time series. 

E(t) = EKZ,,...J (t) + a(t) (6) 

and E(t) reveal a change in ozone concentrations in 1989 ' 

cannot be attributed to temperature fluctuations (Figure 6). It 

should be noted that the ordinate in Figure 6 corresponds approxi­

mately to percent changes from the long-term mean. Thus, this 
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Agure 2. (a) Quantile-quantile plot of de-seasonaJized daily maxima of tem­

perature. (b) Same as (a), except for the Jog of ozone daily maxima. (c) Same 

as (a), except for 3,000 nonnaJ random numbers. 
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Figure 3. Scatter diagram between de-seasonaJized dally maxima of tem­
perature and log of ozone. 
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Figure 4. Averaged annual profiles of temperature and ozone. 

procedure reveals changes in ozone concentrations which may be 
attributable to changes in emissions. 

The original ozone time series, O(t), now may be defined as 
temperature-dependent time series, O~a(t}, and the white noise 
process, W(t}, 

O(t) = W(t) + O~a(t). (7) 

For the data set examined here, W, and O~a(t) contribute 
approximately 20 and 80 percent, respectively, to the total vari­
ance in O(t). Substituting expressions (5) and (6) into expression 
(7), the ozone time series then is represented as 

0, = W, + [aT~a(t + 19) +b] + eKZ,,_ .. (t) + ~(t). (8) 

In the right side of expression (8), the first term represents 
short-term turbulence which is always uncorrelated with long­
term effects. The second term represents long-term and seasonal 
temperature effects in ozone, and the third term reflects long-term 
emissions effects unexplained by temperature. The fourth term, 
[~(t) = { e(t) - eKZ, ,. ... (t)} ], represents small ozone seasonal var­
iations induced by meteorological variables other than tempera­
ture. With the regression equation (5) explaining 93 percent of the 
variance in O~a(t), the contribution of the seasonal component, 
T ~a(t + 19), to the total variance in O(t) is approximately 70 percent 
(0.93 X 0.80). 
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Figure 5. Unear least-squares regression fit for the seasonal components of 
temperature and log of ozone daily maxima. 

; 

s : 
.... 

• 
; 

• - -

Log of M&x Ozone with Temperature Effect Remov-.1 
- Ita ,.,_ from KZ,..., 
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Figure 6. The variation in log of ozone maxima when the temperature effect 
is removed from ozone concentrations (t(t) in expression (5)) along with the 
trend derived from the application of KZ, ,...3 to e(t). 

Expressions (4) and (7) are given for the natural logarithm of 
the original ozone data. An additive term e(t} then bas a multipli­
cative effect, exp{ e(t) }, in the original data. Since e(t) is suffi­
ciently small, we have 

expe (t) -,.1 + e(t); i.e., In (1 + e(t)) = e(t). (9) 

Hence, e(t)•IOO or ~(t)•Ioo in Figure 6 corresponds to percent 
changes in long-term emissions effects in the original ozone data. 
The zero level of e(t) corresponds to the mean value of the total 
ozone data used for analyses. As a first step in our analysis, a log­
transform of the original data was performed to stabilize the 
variance of noise W(t) in expression (7), which also has a multi­
plicative effect on the ozone concentrations (ppb ). 

Results and Discussion 
The presence of significant short-term variations and strong 

seasonality in temperature and ozone data make it difficult to draw 
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inferences using traditional statistical methods. For example, a 

plot of annual average ozone concentrations does not reveal a 

trend during the period 1983 through 1991. Similarly, a scatter 

plot of daily maxima of temperature versus ozone showed little 

relationship between these two variables. Our analysis of ozone 

data at Cliffside Park, New Jersey, reveals that the long-term and 

seasonal variations in the original time series account for approxi­

mately 10 and 70 percent, respectively, of the total variance in the 

original time series. The stochastic component (white noise) is 

approxjmately 20 percent of the total variance in the original time 

series data. Tradit ional statistical methods cannot perform well 

under conditions in which the effect that we want to discern is 

much smaller than that of the seasonal and s tochastic components 

in the data. The primary advantage of the KZ filter is that it can 

separate short- and long-term variations in time series of meteo­

ro logical and air quality data because of its very high frequency 

resolution characteristics. 

The strong relationship between ~9.J(T,. 19) and ~.JCO,) 

indicates a significant linear component of the effect of tempera­

ture on ozone concentrations. This effect is absent from the time 

series of the residuals [ e(t)] in expression (5) above. We have also 

applied this method to daily maxima of temperature and ozone for 

the ozone season only (i.e., April 15 to October 15), treating the 

data in the October 16 to April 14 period as missing data. As 

expected, analysis of data covering only the ozone season also has 

indicated a similar change in ozone levels during 1989. We also 

have applied this method to ozone data at another nearby monitor­

ing location and found the results similar to those obtained at the 

Cliffside Park monitoring location. 

Since the influence of meteorology on ambient ozone levels 

has been moderated in this study, the change in ozone levels 

detected in 1989 might be attributable to changes in emissions due 

to regulatory actions, such as the fuel volatility control strategy 

implemented by the Northeast states in 1989.11 However, it is 

important to investigate whether other limiting factors, such as 

NO, availability, may have also contributed to the change in ozone 

levels in the post-1988 period. Furthermore, it is plausible that 

other meteorological variables, such as ventilation, water vapor, 

isolation, etc., may have also influenced ozone concentrations. 

Such effects are evidenced by the semi-annual cycle present in the 

temperature-independent ozone time series in Figure 6. If data are 

available, the influence of the above meteorological variables on 

ozone concentrations also may be removed similarly by this 

method. We currently are applying this technique to data spanning 

the period 1980 through 1992 from several monitoring s tations, in 

an effort to demonstrate the method's robustness and to examine 

trends in ozone air quality in the northeastern United States. These 

results, when combined with trends in ozone precursor concentra­

tions, should enable us to relate changes in ambient ozone air 

quality to changes in emissions and thus track progress toward 

ozone compliance. 

Summary 
In this paper, we presented a technique to detect changes in 

ozone air quality in the presence of meteorological fluctuations . 

The results indicate that the method can filter out or moderate the 

influence of meteorology on ozone, enabling us to track changes 

in ozone air quality due to changes in emissions. This then will 

allow us to evaluate the effectiveness of regulatory programs in 

improving ambient ozone air quality. 
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This paper presents a statistical method for filtering out or moderating the influence of meteorological fluctuations on ozone 
concentrations. Use of this technique in examining trends in ambient ozone air quality is demonstrated with ozone data from a 
monitoring location in New Jersey. The results indicate that this method can detect changes in ozone air quality due to changes in 
emissions in the presence of meteorological fluctuations. This method can be useful in examining the effectiveness of regulatory 
initiatives in improving ozone air quality. 

Introduction 
It is well known that meteorology plays a significant role in 

establislllng conditions conducive to the formation and buildup of 
lllgh ozone concentrations.l·3 Analysis of ozone air quality trends 
in the northeastern United States is hampered by the lack of a long­
term quality-assured database, as well as by the variability in 
meteorology. Also. it is difficult to detect the change in ozone air 
quality due to the change in emissions in the presence of meteo­
rological tlucruations.4 Furthermore, unless the change in emis­
sions is substantial, any improvement in ozone air quality acllleved 
from modest emissions reductions can be easily masked by the 
variability in meteorology.s 

Since ambient ozone concentrations are strongly influenced by 
meteorological tlucruations, statistically robust methods are needed 
to track the effectiveness of regulatory initiatives in improving 
ambient ozone air quality. We must separate different phenomena 
present in the time series of both meteorological and ozone data 
wlllch have different characteristics such as long- and short-term 
variations. A precise examination of either meteorological or 
ozone data becomes extremely complex because both strongly 
affect each other and produce false effects for each side. Statisti­
cal methods currently being used6-3 to detect ozone trends are not 
powerful enough to clearly separate random variations and meteo­
rological effects from long-term trends. 

In this paper, we present a method to filter out or moderate the 
influence of meteorology on ambient ozone levels. using surface 
temperature as a surrogate for all meteorological conditions that 
affect ozone. The results from the application of tills method to 
ozone data from Cliffside Park. New Jersey, reveal a marked 

Implications 
Because the influence of stochastic and seasonal variations In meteoro­

looical conditions on ambient ozone concentrations is much greater than 
that of long-term changes in emissions of ozone precursors, it is difficult to 
assess the effectiveness of regulatory lnitlattves in Improving ozona air 
quality. Although a meteorologically weighted measure of ozone may 
alleviate some of the difficulties associated with the analysis of ozone trends, 
a statlsttcatly robust method is necessary to detect changes fn ozone air 
quality in the presence of meteorological fluctuations. This paper presents 
a technique for filtering out or moderating the influence of meteorology on 
ozone concentrations so that the Impact of regulatory programs on ambient 
ozone air quality can be assessed. 

change in ambient ozone concentrations during the post-1988 
period. This change in ozone concentrations in 1989 may be a 
result of controls on the volatility of fuel used in the Northeast 

Data and Analysis Procedures 

Data 
Hourly concentrations of ozone measured at the Cliffside Park 

monitor in northern New Jersey from 1983 through 1991 were 
obtained from the U.S. EPA's Aerometric Information Retrieval 
System (AIRS) database. Also, hourly values of surface tempera­
ture measured at LaGuardia Airport in New York City, wlllch is 
the weather station nearest to the location of the ozone monitor, 
were assetnbled for the above time period. A subset of data 
consisting of daily maxima of temperature and ozone was derived 
from the hourly time series in the following analysis. 

Method of Analysis 
We assume that a time series of temperature or ozone may be 

represented as 
X(t) = e(t) + S(t) + W(t) (1) 

where X(t) is the original time series, e(t) is a trend component, 
S (t) is seasonal variation, and W(t) is wlllte noise. In our analysis, 
we will separate the deterministic portions (e and S) from the 
short-term variations (white noise) in the data using the 
Kolmogorov-Zurbenko (KZ.,_P) filter.9 The I<Zu,p filter is a low­
pass filter produced by repeated iterations of a simple moving 
average. The moving average (each iteration) is defined by 

1 k 

Y;= m L X;.i 
i•·K 

(2) 

where m = 2k + 1. The Y; become the input for the second pass, 
and so on. Determination of the fmallow-pass filter (specifying 
"m" and the number of passes "p") is an iterative process in wlllch 
the data user determines that the wlllte noise has been removed. 

The output time series, Y,, is the low-frequency part of X,, 

Y, = KZ,.,,p (XJ. (3) 
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The Y, contain both long-term trend and seasonal effects. The 

KZ filter and its statistical characteristics have been carefully 

studied by Zurbeoko.to 
When the ~.J (29-day length (m) with three iterations (p)] 

filter is applied to the daily maximum temperature and the log of 

daily maximum ozone concentration data, one obtains time series 

that exhibit no white noise (Figure 1). The filtered temperature 

and the log of ozone time series are denoted hereafter as T ~a(t) and 

O~a(t), respectively. 
Quantile-quantile (QQ) plots of the residual of the filtered 

temperature [T(t)- T u(t}) and the log of ozone [ {O(t)- O~a(t)} = 
W(t)] are presented in Figures 2(a) and 2(b}, respectively, to 

illustrate that they are indeed white noise; a QQ plot of 3,000 

normal random numbers is shown in Figure 2(c) for comparison. 

Periodograms (not shown here) of the residuals also confirm that 

they are almost white noise. In addition, a scatter plot of ozone 

residuals and temperature residuals indicates no relationship 

between them (Figure 3). Therefore, we proceed with our analysis 

of noise-free (filtered) temperature and ozone data. 

A linear regression of the filtered log of ozone concentrations 

(O~a(t)] on filtered temperature [Tu(t)] data was performed: 

Ou(t) = aT~a(t) + b + E(t) 

R2 = 0.83 
(4) 

where a and b are fitted parameters, e(t) are the residuals of the 

relationship, and R2 is the square of the correlation coefficient. 

The averaged annual profiles of temperature and ozone, pre­

sented in Figure 4, indicate a phase lag between temperature and 

ozone. Ozone concentrations are influenced by both emissions 

and meteorological variables, whereas temperature is dictated 

primarily by the prevailing meteorological conditions. The linear 

relationship between Ou(t) and T~a(t) becomes stronger when the 

temperature data are lagged by 19 days (Figure 5). 

On(t) = aTu(t+19} + b + E(t) 

R2 = 0.93 
(5) 

The e(t) reveal changes in ozone attributable to changes in 

emissions. Moreover, the relationship is devoid of the white noise 

that would characterize a regression approach using the raw data. 

A KZ1 yur.J filter was applied to e(t), 

: 
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Flgure 1. Seasonal variation in the daily maxima of temperature and log of 

ozone derived from the application of KZ29.3 to the original time series. 

E(t) = EKZ 1 ,...> (t) + ~(t) (6) 

and E(t) reveal a change in ozone concentrations in 1989 \ .1 

cannot be attributed to temperature fluctuations (Figure 6). It 

should be noted that the ordinate in Figure 6 corresponds approxi­

mately to percent changes from the long-term mean. Thus, this 

• 

a 

,-· 
r 

(a) 

~~------~----------------------~ .. 

J • 
J : 

I 

J 
J -
I 

• 

00 Plol of o.-tlz8d LOQ of Ozone 

(b) 

.. 

(c' 

.. 

Flgure 2. (a) Quantile-quantile plot of de-seasonalized daily maxima of tem­

perature. (b) Same as (a), except for the log of ozone dally maxima. (c) Same 

as (a), excapt for 3,000 normal random numbers . 
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Figura 3. Scatter diagram between de-seasonalized daily maxima of tem­
perature and log of ozone. 
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Figura 4. Averaged annual profiles of temperature and ozone. 

procedure reveals changes in ozone concentrations which may be 
attributable to changes in emissions. 

The original ozone time series, O(t), now may be defined as 
temperature-dependent time series, O~a(t), and the white noise 
process, W(t), 

O(t) = W(t) + O~a(t). (7) 

For the data set examined here, W, and O~a(t) contribute 
approximately 20 and 80 percent, respectively, to the total vari­
ance in O(t). Substituting expressions (5) and (6) into expression 
(7), the ozone time series then is represented as 

0 1 = W1 + (aT ~a(t + 19} +b] + EKZ, ,.._.(t) + o(t). (8) 

In the right side of expression (8), the first term represents 
short-term turbulence which is always uncorrelated with long­
term effe.cts. The second term represents long-term and seasonal 
temperature effects in ozone, and the third term reflects long-term 
emissions effects unexplained by temperature. The fourth term, 
(o(t) = { E(t) - EKZ, ,..._,(t)} ], represents small ozone seasonal var­
iations induced by meteorological variables other than tempera­
ture. With the regression equation (5) explaining 93 percent of the 
variance in O~a(t), the contribution of the seasonal component, 
T ~a(t + 19), to the total variance in O(t) is approximately 70 percent 
(0.93 X 0.80). 
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Agura 5. Unear least-squares regression fit for the seasonal components of 
temperature and log of ozone daily maxima. 
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Agura 6. The variation in log of ozone maxima when the temperature effect 
is removed from o.zone concentrations (e(t) in expre.ssion (5)) along with the 
trend derived from the application of KZ1 _.J to t{t). 

Expressions (4) and (7) are given for the natural logarithm of 
the original ozone data. An additive term E(t) then has a multipli­
cative effect, exp{ E(t)}, in the original data. Since E(t) is suffi­
ciently small, we have 

exp£ (t) -::.1 + E(t); i.e., In (1 + E(t)) = E(t). (9) 

Hence, E(t)•too or ~t)• too in Figure 6 corresponds to percent 
changes in long-term emissions effects in the original ozone data. 
The zero level of E(t) corresponds to the mean value of the total 
ozone data used for analyses. As a first step in our analysis, a log­
transform of the original data was performed to stabilize the 
variance of noise W(t) in expression (7), which also has a multi­
plicative effect on the ozone concentrations (ppb ). 

Results and Discussion 
The presence of significant short-term variations and strong 

seasonality in temperature and ozone data make it difficult to draw 
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inferences using traditional statistical methods. For example, a 

plot of annual average ozone concentrations does not reveal a 

trend during the period 1983 through 1991. Similarly, a scatter 

plot of daily maxima of temperature versus ozone showed little 

relationship between these two variables. Our analysis of ozone 

data at Cliffside Park, New Jersey, reveals that the long-term and 

seasonal variations in the original time series account for approxi­

mately 10 and 70 percent, respectively, of the total variance in the 

original time series. The stochastic component (white noise) is 

approximately 20 percent of the total variance in the original time 

series data. Traditional statistical methods cannot perform well 

under conditions in which the effect that we want to discern is 

much smaller than that of the seasonal and stochastic components 

in the data. The primary advantage of the KZ filter is that it can 

separate short- and long-term variations in time series of meteo­

rological and air quality data because of its very high frequency 

resolution characteristics. 
The strong relationship between ~9.J(T,. 19) and ~.J(OJ 

indicates a significant linear component of the effect of tempera­

ture on ozone concentrations. This effect is absent from the time 

series of the residuals [ E(t)) in expression (5) above. We have also 

applied this method to daily maxima of temperature and ozone for 

the ozone season only (i.e., April 15 to October 15), treating the 

data in the October 16 to April 14 period as missing data. As 

expected, analysis of data covering only the ozone season also has 

indicated a similar change in ozone levels during 1989. We also 

have applied this method to ozone data at another nearby monitor­

ing location and found the results similar to those obtained at the 

Cliffside Park monitoring location. 

Since the influence of meteorology on ambient ozone levels 

has been moderated in this study, the change in ozone levels 

detected in 1989 might be attributable to changes in emissions due 

to regulatory actions, such as the fuel volatility control strategy 

implemented by the Northeast states in 1989.11 However, it is 

important to investigate whether other limiting factors, such as 

NO. availability, may have also contributed to the change in ozone 

levels in the post-1988 period. Furthermore, it is plausible that 

other meteorological variables, such as ventilation, water vapor, 

isolation, etc., may have also influenced ozone concentrations. 

Such effects are evidenced by the semi-annual cycle present in the 

temperature-independent ozone time series in Figure 6. If data are 

available, the influence of the above meteorological variables on 

ozone concentrations also may be removed similarly by this 

method. We currently are applying this technique to data spanning 

the period 1980 through 1992 from several monitoring stations, in 

an effort to demonstrate the method's robustness and to examine 

trends in ozone air quality in the northeastern United States. These 

results, when combined with trends in ozone precursor concentra­

tions, should enable us to relate changes in ambient ozone air 

quality to changes in emissions and thus track progress toward 

ozone compliance. 

Summary 
In this paper, we presented a technique to detect changes in 

ozone air quality in the presence of meteorological fluctuations. 

The results indicate that the method can ftlter out or moderate the 

influence of meteorology on ozone, enabling us to track changes 

in ozone air quality due to changes in emissions. This then will 

allow us to evaluate the effectiveness of regulatory programs in 

improving ambient ozone air quality. 
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TRADING POLICY ASSETS 
, . 7~ .·· .. : ~·;.:· .. ... '~ , o( •• 

* More Environmental Bang for the Buck 
* Highly Effective if Monitoring and 

Enforcement are Adequate 

* Rewards Innovation and Stimulates R&E 
* Creates an Environmental Asset which 

can aid in Financing Pollution Control 

I ""F 



EMISSIONS-BASED POLICY ASSETS 

+ Caps on ~eal Emissions 

+ Absolute Accountability for Sources' 

Emissions Reduction Performance 

+ Seals the Door to the Bureaucratic Back­

Room 

+ Transforms "Regulatory Reform", "Reinventing 

Government" and "Flexibility" into Environmental 

Allies 



KEY POLICY ELEMENTS 

• Seasonal Limits On Actual Emissions 
• Required Reductions From Those Limits 

• Banking Of Emission Trading Units 
• Minimize Transaction Constraints 

...... 
( 

• lntersector And lnterpollutant Trading Regional Emissions Trading 



BASIC DIFFERENCES 
BETWEEN.C&C AND ERMS 

Command & 
Control 

We tell you what 
you will do. 

We tell you which 
units to control. 

We tell you the 
· required 

reduction/control 
optio_ns .per 

emission unit. 

.EBvlS 

You tell us what 
· you will do. 

You pick which 
units to control. 

We tell you the 
overall reducti-on 
to be achieved, 

you pick the 
units to control. 



BASIC DIFFJ:RENCES 
BETWEEN.C&C AND ERMS 

~·:;. 

! 

Command & 
Control 

We tell you what 
you will do. 

We tell you which 
units to control. 

We tell you the 
· required 

reduction/control 
optio_ns .per 

emission unit. 

.E8fy1$ 

You tell us what 
· you will do. 

You pick which 
units to control. · 

We tell you the 
overall reduction 
to be achieved, 

you pick the 
units to control. 
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ADVANTAGES OF A 

REGIONAL POLICY 

c) Improved Fit Between the Problem 

and Strategy 

~ Improved Prospects for .Solving the 

Problem 

C$ Reduced Cost 

c) Improve Potential for Success of a 

Market 

o} Removes any Economic Distortion 

Between States Elf} F 



BUILDING THE MARKET 
_, ; ... ;·.··.:~·;·.··,:-:·"~,-.

5 
... 
0

,., .. ,::p ···sp ·[ ., .. ~, .. ,. . ., . , ... ·:->:··.::;_ ·:,, .. ,~ . .. 

:. ·.f;.::ir:-®.<'~· ·:; t!r : . : :1?!. ·:·, · · .· ··:: -:.-._ .. :,:·;:·:~::'.:DEMAND 

~ ~ 

~ MERCs 
.... Stationary 

Sources 
~ LEVs 
.... Repair 
~In-use 

Reductions 
~Alternative 

Fuels 

.... Emissions Caps 
~ Flexibile 

Compliance 
~ Nonattainment 

Trading 
~Economic 

Incentive 
Program 

BBF . . 
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WHY WE SELECTED ERMS 

• Allows Additional Flexibility 

• Allows The Marketplace To· D-etermine 
Where Reductions Come From · 

·• Introduces A Profit Motive 

• We Did Not Know Where To Go For 
Command & Control 



WHAT IS·ERMS? 
, . ... 

· • A system to obtain additional 
. reduction from · point s~urces 

• CAA· requires +/- 3o/o overall . 
reductions in VOM per year 

• Point sources will give their share 
. each year · 

• Program switches to maintenance 
when attainment reached 

• Other programs will be implemented 
to control mobile and area sources 

· .. 



WHAT IS ERMS? 

A SYSTEM THAT ALLOWS A SOURCE TO 

• REDUCE THEIR OWN EMISSIONS 

• BUY SOMEONE ELSE'S EMISSION 
REDUCTIONS 

• GET SOMETHING IN RETURN FOR OVER-.· 
COMPLIANCE 

~ ... 



WHY WE PICKED ERMS 

• CHICAGO AREA WILL NOT REACH ATTAINMENT BY USE OF 
CURRENTPLAN 15°/o RFP 

• ADDITIONAL REDUCTIONS NEEDED FROM ALL SOURCES 

POINT AREA MOBILE IN ABOUT EQUAL PORTIONS FROM EACH SECTOR 

• COMPLIANCE COST SAVINGS FOR AREA 
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. POINT SOURCE 
·REDUCTIONS ARE 

REQUIRED BECAUSE 

•Driven by CAA and RFP prov.i$ions 

CHOICE WAS ... 

• Continue selected command and 
control 

•Across the board reductions 

• New options- ERMS 



(~ ··OPERATIONAL COMPONENTS 
OFERMS 

• Seasonal control program: May 1 -­Sept. 30 

• A baseline must be established as a benchmark: 

Based On Facility-Wide VOM Emissions 
Must Use Actual Seasonal VOM Emissions 

Average Of 2 Out Of Last 3 Years ( 1994-1996) 

Some Emission Units Are Excluded From Baseline 

Some Adjustments Are Made To Baseline 



• Seasonal emissions recordkeeping & · .~· 
repo~ing are required 

• Seasonal emissions for each year must 
be less than Allotted ATUs for that 
year, otherwise · ATUs must be sougrtt 

. from market 

• Emissions recordkeeping & reporting 
coordinated with AERs 

• Allotments and baseline incorporated 
into CAAPP permit 


